skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sundaram, Sheila"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Supersolvable hyperplane arrangements and matroids are known to give rise to certain Koszul algebras, namely their Orlik–Solomon algebras and graded Varchenko–Gel’fand algebras. We explore how this interacts with group actions, particularly for the braid arrangement and the action of the symmetric group, where the Hilbert functions of the algebras and their Koszul duals are given by Stirling numbers of the first and second kinds, respectively. The corresponding symmetric group representations exhibit branching rules that interpret Stirling number recurrences, which are shown to apply to all supersolvable arrangements. They also enjoy representation stability properties that follow from Koszul duality. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. Abstract In this paper, we give Pieri rules for skew dual immaculate functions and their recently discovered row-strict counterparts. We establish our rules using a right-action analogue of the skew Littlewood–Richardson rule for Hopf algebras of Lam–Lauve–Sottile. We also obtain Pieri rules for row-strict (dual) immaculate functions. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  3. We introduce a new basis of quasisymmetric functions, the row-strict dual immaculate functions. We construct a cyclic, indecomposable 0-Hecke algebra module for these functions. Our row-strict immaculate functions are related to the dual immaculate functions of Berg-Bergeron-Saliola-Serrano-Zabrocki (2014-15) by the involution ψ<#comment/> \psi on the ring QSym \operatorname {QSym} of quasisymmetric functions. We give an explicit description of the effect of ψ<#comment/> \psi on the associated 0-Hecke modules, via the poset induced by the 0-Hecke action on standard immaculate tableaux. This remarkable poset reveals other 0-Hecke submodules and quotient modules, often cyclic and indecomposable, notably for a row-strict analogue of the extended Schur functions studied in Assaf-Searles (2019). Like the dual immaculate function, the row-strict dual immaculate function is the generating function of a suitable set of tableaux, corresponding to a specific descent set. We give a complete combinatorial and representation-theoretic picture by constructing 0-Hecke modules for the remaining variations on descent sets, and showing thatallthe possible variations for generating functions of tableaux occur as characteristics of the 0-Hecke modules determined by these descent sets. 
    more » « less
  4. Gaetz, Christian (Ed.)